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Summary The need for analyzing failure time data with high-dimensional covariates arises in

investigating the relationship between a censored survival outcome and microarray gene expression

profiles. We consider two regularization approaches, the LASSO and the threshold gradient

directed regularization, for variable selection and estimation in the accelerated failure time model

with high-dimensional covariates based on Stute’s weighted least squares method. The Stute

estimator uses the Kaplan-Meier weights to account for censoring in the least squares criterion. The

weighted least squares objective function makes the adaption of this approach to high dimensional

covariate settings computationally feasible. We use theV -fold cross validation and a modified

Akaike’s Information Criterion for tuning parameter selection, and a bootstrap approach for

variance estimation. The proposed method is evaluated using simulations and demonstrated with a

real data example.

KEYWORDS: Cross validation; LASSO; Microarray; Threshold gradient directed regularization;

Variable selection; Weighted least squares.
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1. Introduction

The accelerated failure time (AFT) model is a linear regression model in which the response

variable is the logarithm or a known monotone transformation of a failure time (Kalbfleisch

and Prentice, 1980). As a useful alternative to the Cox model (Cox, 1972), this model has an

intuitive linear regression interpretation, see Wei (1992) for a lucid discussion. Semiparametric

estimation in the AFT model with an unspecified error distribution has been studied extensively

in the literature for right censored data. In particular, two methods have received special attention.

One method is the Buckley-James estimator which adjusts censored observations using the Kaplan-

Meier estimator. The other is the rank based estimator which can be motivated from the score

function of the partial likelihood, see for example, Prentice (1978); Buckley and James (1979);

Ritov (1990); Tsiatis (1990); Wei, Lin and Ying (1990); and Ying (1993), among others. However,

the AFT model has not been widely used in practice, mainly due to the difficulties in computing the

semiparametric estimators of the afore mentioned methods, even in situations when the number of

covariates is relatively small (Jin, Lin, Wei and Ying, 2003). For high-dimensional covariates it is

even more difficult to apply these methods, or their regularized versions, especially when variable

selection is needed along with estimation.

The need for analyzing failure time data with high-dimensional covariates arises in investigating

the relationship between a censored survival outcome and microarray gene expression profiles, see

for example, Alizadeh et al. (2000) and Rosenwald et al. (2003). These studies use large scale gene

expression profiling in analysis of various types of lymphoma. The sample size in these studies is

at most in the hundreds, while the number of genes is at least in the thousands. One important goal

of these studies is to identify genes that are associated with and are predictive of survival times.

This is a variable selection problem from a statistical standpoint. Such studies call for methods that

can simultaneously accomplish variable selection and estimation.

In this paper, we study two regularized versions of Stute’s weighted least squares (LS) estimator
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(Stute 1993, 1996) in the AFT model with high dimensional covariates, the least absolute shrinkage

and selection operator method (LASSO, Tibshirani 1996) and the threshold gradient directed

regularization method (TGDR, Friedman and Popescu 2004) for variable selection and model

fitting. The Stute estimator uses the Kaplan-Meier weights to account for censoring in the least

squares criterion. It is computationally more amenable to high-dimensional covariates than the

Buckley-James and rank based estimators. It also has rigorously theoretical justifications under

reasonable assumptions. The LASSO and the TGDR methods have also been applied to the Cox

model with high dimensional covariates for variable selection and estimation (Tibshirani, 1997 and

Gui and Li 2004, 2005). Because of the least squares structure in the criterion function for the Stute

estimator, it is computationally efficient to apply the LASSO and the TGDR methods in the AFT

model.

In the following, we first define Stute’s weighted LS estimator. In Section 3, we describe the

LASSO and the TGDR methods for regularization of the weighted LS objective function. We use

the V-fold cross validation for tuning parameter selection. We propose using a bootstrap method for

variance estimation of the regularized Stute estimators. Section 4 contains the asymptotic properties

of the Stute estimator under theL1 constraint assuming fixed dimensional covariates and large

sample size. In Section 5, we use simulations to evaluate the proposed methods and apply them to

a study that investigates the relationship between censored survival times of mantel cell lymphoma

patients and their gene expression profiles as an illustration. Concluding remarks are given in

Section 6.

2. Weighted least squares estimation in AFT model

Let Ti be the logarithm of the failure time andXi a d-dimensional covariate vector for theith

subject in a random sample of sizen. The AFT model assumes

Ti = β0 + X ′
iβ + εi, i = 1, . . . , n, (1)
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whereβ0 is the intercept,β ∈ IRd is the regression coefficient andεi is the error term. WhenTi

is subject to right censoring, we can only observe(Yi, δi, Xi) with Yi = min{Ti, Ci}, whereCi is

logarithm of the censoring time andδi = 1{Ti≤Ci} is the censoring indicator. Suppose that a random

sample(Yi, δi, Xi), i = 1, . . . , n with the same distribution as(Y, ∆, X) is available.

Let F̂n be the Kaplan-Meier estimator of the distribution functionF of T . Following Stute and

Wang (1993),F̂n can be written aŝFn(y) =
∑n

i=1 wni1{Y(i) ≤ y}, wherewni’s are the jumps in

the Kaplan-Meier estimator and can be expressed as,

wn1 =
δ(1)

n
, and wni =

δ(i)

n− i + 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)

, i = 2, . . . , n,

which are also called the Kaplan-Meier weights. HereY(1) ≤ · · · ≤ Y(n) are the order statistics

of Yi’s andδ(1), . . . , δ(n) are the associated censoring indicators. Similarly, letX(1), . . . , X(n) be

the associated covariates of the orderedYi’s. Let θ = (β0, β). Stute (1993, 1996) proposed the

weighted least squares estimatorθ̂ ≡ (β̂0, β̂) that minimizes

M(θ) =
1

2

n∑
i=1

wni(Y(i) − β0 −X ′
(i)β)2. (2)

Under reasonable conditions, Stute (1993, 1996) proved thatθ̂ is consistent and asymptotically

normal asn →∞ for a fixedd. We describe these conditions in Section 4 below.

3. Regularized weighted LS regression for AFT model

If d is comparable to or greater thann, regularization is needed to obtain a stable estimator ofθ with

smaller prediction error. In addition, in the “smalln and larged” settings, it is desirable to carry

out variable selection and estimation simultaneously. We consider two methods for this purpose,

the LASSO and the TGDR methods in (2).
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We first centerX(i) andY(i) by theirwni-weighted means, respectively. Let

Xw =

∑n
i=1 wni X(i)∑n

i=1 wni

, Y w =

∑n
i=1 wni Y(i)∑n

i=1 wni

.

We replaceX(i) andY(i) with w
1/2
ni (X(i)−Xw) andw

1/2
ni (Y(i)−Y w), respectively. For simplicity, we

still useX(i) andY(i) to denote the weighted centered values. Using the weighted centered values,

the intercept estimate is zero. So the weighted LS objective function can be written as

M(β) =
1

2

n∑
i=1

(Y(i) −X ′
(i)β)2. (3)

3.1 The LASSO estimator

The LASSO estimator for linear regression is defined as the maximizer of an LS objective function

under theL1 constraint
∑d

j=1 |βj| ≤ u, for a data-dependent tuning parameteru (Tibshirani, 1996).

Here the constraint is only imposed on the regression coefficientβ, not including the intercept.

The tuning parameteru determines how many estimated coefficients are zero. TheL1 constraint

is equivalent to adding anL1 penalty to the objective function. Kim and Kim (2004) noticed that

theL1 boosting algorithm provided a computationally feasible and flexible solution to the LASSO

type estimators, especially in high dimensional covariates cases. We apply it to the present LASSO

estimation problem. For a fixedu, it can be implemented in the following steps:

1. Initializationβ = (0, . . . , 0)′.

2. With the current estimate ofβ, computeg(β), the negative derivative ofM(β) with respect

to β. Denote thejth component ofg(β) asgj(β), j = 1, . . . , d.

3. Find j∗ that minimizesmin(gj(β),−gj(β)). If gj∗(β) = 0, then stop the iteration.

4. Otherwise denoteγ = −sign(gj∗(β)). Find κ̂ ∈ [0, 1] that minimizesM((1 − κ)β + κ ×
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u × γηj∗), whereηj∗ is a lengthd vector that has thep∗th element equals to 1 and the rest

components equal to 0.

5. For thejth component ofβ: β(j) = (1 − κ̂)β(j) for j 6= j∗ andβ(j∗) = (1 − κ̂)β(j∗) + γuκ̂.

Let m = m + 1.

6. Repeat steps 2–5 until convergence or a fixed number of iterationsN has been reached.

Theβ at convergence is the LASSO estimate (Kim and Kim, 2004). We conclude convergence if

the absolute value ofg(j∗)(β) computed in step 3 is less than a pre-defined criteria, and/or ifM(β)

is smaller than a pre-defined threshold.

An attractive feature of theL1 boosting algorithm is that its convergence rate is independent

of the dimension of input, which is particularly valuable for high dimensional genomic data (Kim

and Kim, 2004). In addition, it has been known that for boosting methods, over-fitting usually

does not pose a serious problem (Friedman, Hastie and Tibshirani, 2000). So the overall iteration

number can be taken to be a large number to ensure convergence. We note that we can also compute

the LASSO estimator using the LARS algorithm (Efron, Hastie, Johnstone and Tibshirani, 2004),

where the number of iterations is larger thand.

3.2 The TGDR estimator

The TGDR algorithm proposed by Friedman and Popescu (2004) can be adapted to estimation of

(3) as follows. Let∆ν be a fixed small positive number, and letν be the index for the point along

the parameter path. Letβ(ν) denote the parameter estimate corresponding to the indexν. For any

fixed threshold value0 ≤ τ ≤ 1, the TGDR algorithm consists of the following iterative steps:

1. Initialize β(0) = (0, . . . , 0)′ andν0 = 0.

2. For the current estimateβ = β(ν), compute the negative gradientg(ν) = −∂M(β)/∂β.

Denote thejth component ofg(ν) asgj(ν). If maxj |gj(ν))| = 0, stop the iteration.
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3. Compute the vectorf(ν) of lengthd, where thejth component off(ν): fj(ν) = I{|gj(ν)| ≥

τ ·maxj |gj(ν)|}.

4. Updateβ(ν + ∆ν) = β(ν) + ∆νg(ν)f(ν) andν = ν + ∆ν .

5. Steps 2–4 are repeatedS times.S is taken to be a large number to yield a full parameter path.

The product off andg in step 4 is component-wise:f(ν)g(ν) = (f1(ν)g1(ν), . . . , fd(ν)gd(ν))′.

A possible variation of the above algorithm is to use the standardized negative gradientg(ν) =

g(ν)/ maxj |gj(ν)| in step 4, so that each increment cannot be overly greedy and subtle structures

are not missed. The thresholdτ determines the relative degree of regularization: largeτ yields

estimates close to the LASSO/LARS, whereas estimates with smallτ are close to those from the

ridge regression. Since each increment is made in a direction in an acute angle with the negative

gradient, each iteration decreasesM(θ).

3.3 Tuning parameter selection

We use theV -fold cross validation (Wahba, 1990) to determine the tuning parameters:u for the

LASSO and(k, τ) for the TGDR. For a pre-defined integerV , partition the data randomly into

V non-overlapping subsets of equal sizes. We define the CV score and the Akaike’s Information

Criterion (AIC) type of score as

CV score =
V∑

v=1

[
M(θ̂(−v))−M (−v)(θ̂(−v))

]
, AIC score = n× log(CV score) + 2K, (4)

respectively, for a fixedu (LASSO) or(k, τ) (TGDR). Hereθ̂(−v) is the LASSO (TGDR) estimate

of θ based on the data without thevth subset,M (−v) is the functionM defined in (3) evaluated

without thevth subset, andK is the corresponding number of non-zero coefficients.

For the LASSO, we chooseu as the minimizer of the AIC score. For the TGDR, we use the

following two-step procedure. For a fixedτ , k is chosen as the minimizer of theCV score. We
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then chooseτ by minimizing theAIC score with cross validatedk from the first step.

Comparing with the originalV -fold cross validation in Wahba (1990), the proposed approach

puts a penalty on the number of non-zero coefficients, which favors smaller models with

comparable prediction performance. This is desirable especially for survival data with high

dimensional covariates. For the TGDR,k is chosen by minimizing theCV score only. The

rationale is as follows. For the TGDR withτ > 0, k also determines the number of nonzero

coefficients and the degree of shrinkage. So if we also choosek using the AIC type criteria, there

will be ”double adjustment”, which is too severe and not necessary.

3.4 Variance estimation

For the LASSO and the TGDR, variances of the estimators can be estimated using the least squares

type expressions as in Tibshirani (1997). However, this approach yields zero variance estimates

for covariates with zero coefficients, which is not satisfactory. We estimate the variance using

the nonparametric 0.632 bootstrap (Efron and Tibshirani, 1993). Samplem ≈ 0.632n from the

n observations without replacement. Then the bootstrap sample is estimated with the sameu

(LASSO) or(τ, k) (TGDR). The bootstrap procedure is then repeatedI times. After proper scale

adjustment, the sample variance of the bootstrap estimates provides an estimate of the variance of

βk. We usem = 0.632n since the expected number of distinct bootstrap observations is about

0.632n. Computationally, it is more efficient to use a smaller bootstrap sample size.

3.5 Characteristics of LASSO and TGDR

The LASSO and the TGDR are both gradient directed iterative algorithms. One difference is

that the LASSO estimate increases in the direction of one covariate, while the TGDR estimate

may increase in the direction of multiple covariates at each iteration. For uncensored data, the

LASSO has been studied in detail by Tibshirani (1996) and Efron et al. (2004). Friedman

and Popescu (2004) showed that the TGDR can provide a path connecting the solutions roughly
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corresponding to the ridge regression and the solutions roughly corresponding to LASSO by

varying the threshold values. Moderate to large threshold values create paths that involve more

diverse absolute coefficient values than the ridge regression but less than the LASSO. When two

covariates are strongly correlated, their corresponding gradients are close. So the TGDR yields

similar estimates for strongly correlated covariates. This property is not shared by the LASSO.

It is easy to construct an example where the difference between the two estimated coefficients is

bounded away from 0, although their covariates are highly correlated. One drawback of the TGDR

is that the TGDR may overestimate the number of non-zero coefficients. More studies are needed

to better understand the relative merits of the LASSO and the TGDR for censored data.

4. Asymptotic distribution of the LASSO estimator for large n and fixedd

Stute (1993, 1996) proved consistency and asymptotic normality of the weighted least squares

estimator with Kaplan-Meier weights under the assumptionsE(ε|X) = 0 and other appropriate

conditions. Because the LASSO penalty is not differentiable, Stute’s proof is not applicable to the

weighted LS estimator under theL1 penalty. On the other hand, when there is no censoring, Fu

and Knight (2000) derived the asymptotic distributions of the lasso-type estimators. Combining

the methods of Stute and Fu and Knight, we can derive the asymptotic distribution of the Stute

estimator under theL1 penalty.

Let H denote the distribution function ofY . Under the assumption of independence betweenT

andC, 1−H(y) = (1− F (y)) (1−G(y)), whereF andG are the distribution functions ofT and

C, respectively. LetτY , τT andτC be the end points of the support ofY, T andC, respectively. Let

Z = (1, X ′)′ = (Z0, Z1, . . . , Zd)
′ andF 0 be the joint distribution of(Z, T ). Denote

F̃ 0(z, t) =





F 0(z, t), t < τY

F 0(z, τY−) + F 0(z, {τY })1{τY ∈ A}, t > τY .

,
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with A denoting the set of atoms ofH. Define two sub-distribution functions:

H̃11(z, y) = P (Z ≤ z, Y ≤ y, δ = 1), H̃0(y) = P (Y ≤ y, δ = 0).

For j = 0, . . . , d, denote

γ0(y) = exp

{∫ y−

0

H̃0(dw)

1−H(w)

}
,

γ1,j(y; θ) =
1

1−H(y)

∫
1{w>y}(w − z′θ)zjγ0(w)H̃11(dz, dw),

γ2,j(y; θ) =

∫∫
1{v<y,v<w}(w − z′θ)zjγ0(w)

[1−H(v)]2
H̃0(dv)H̃11(dz, dw),

γl(y; θ) =
(
γl,0(y; θ), γl,1(y; θ), . . . , γl,d(y; θ)

)′
, l = 1, 2.

We assume that:

(A1) E(ε|X) = 0 andE(T 2) is finite;

(A2) T andC are independent andP (T ≤ C|T,X) = P (T ≤ C|T );

(A3) E(ZZ ′) is finite and nonsingular;

(A4) τT < τC or τT = τC = ∞;

(A5) (a) For the true parameter valueθ∗′ = (β∗0 , β
∗′) = (β∗0 , β

∗
1 , . . . , β

∗
d),

E [(Y − Z ′θ∗)2ZZ ′δ] < ∞; (b)
∫ |(w − z′θ∗)zj|C1/2(w)F̃ 0(dz, dw) < ∞, for j = 0, . . . , d and

C(y) =
∫ y−

0
[(1−H(w))(1−G(w))]−1G(dw).

In (A1), we only need thatE(ε|X) = 0. The distribution ofε can depend on covariates.

This allows heteroscedastic error terms. For example, the results below hold forεi = σ(Xi)ε0i,

whereε0i’s are independent and identically distributed with mean 0. This is weaker than that in the

Buckley-James method (Buckley and James, 1979) and the rank based method (Jin et al. 2003),

where the error termsεi’s are assumed to have a common distribution and to be independent of

Xi’s. (A2) assumes thatδ is conditionally independent of the covariateX given the failure time
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Y . It also assumes thatY andC are independent, which is the same as that for the Kaplan-Meier

estimator. However, we note that (A2) does allow the censoring variable to be dependent on the

covariates. In comparison, in the Buckley-James and rank based estimators, it is assumed that

T − β0 − X ′β andC − β0 − X ′β are conditionally independent givenX. (A3) is a standard

assumption in linear regression models. (A4), together with (A1), renders the true value to be

the minimizer of (2). (A5a) ensures that the weighted LS-LASSO estimator has finite variance.

(A5b) guarantees that the bias of Kaplan-Meier integral is in the order ofo(n−1/2). It is related

to the degree of censoring and the tail behavior of the Kaplan-Meier estimator. Note that (A5) is

implied by the often used and simpler assumption thatτT < τC . The practical interpretation is

that the study can only be conducted for a finite length of time, see e.g. Andersen and Gill (1982).

Therefore, the assumptions needed for theoretical justification of the Stute estimator are quite mild

and comparable to those of the Buckley-James and rank based estimators.

The LASSO estimator̂θ can be defined as the minimizer of

Mn(θ) =
1

2

n∑
i=1

wni(Y(i) − β0 −X ′
(i)β)2 +

λn

n

d∑
j=1

|βj|,

whereλn is the penalty parameter.

Theorem 1. (Consistency) Suppose assumptions (A1) – (A4) hold andλn/n → 0. Thenθ̂ →a.s

θ∗ asn →∞.

Theorem 2. (Asymptotic Normality) Suppose that assumptions (A1) – (A5) hold andn−1/2λn →

λ0 ≥ 0. Let Σ0 = E(ZZ ′). Then
√

n(θ̂ − θ∗) →D arg min(Q) asn →∞. Here

Q(b) = −b′W + b′Σ0b + λ0

d∑
j=1

[bjsgn(β∗j )1{β∗j 6= 0}+ |bj|1{β∗j = 0}],

whereW ∼ N(0, Σ) with Σ = Var{δγ0(Y )(Y − Z ′θ∗)Z + (1− δ)γ1(Y ; θ∗)− γ2(Y ; θ∗)} .
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If λ0 = 0 (the penalty is asymptotically negligible), the asymptotic distribution simplifies to

that of the Stute estimator. Whenλ0 > 0, if some of theβj ’s are zero, the limiting distributions

put positive probabilities at 0. Thus LASSO achieves variable selection in the AFT model by using

theL1 penalty as in the uncensored case. Although the results here are for the case of “largen and

smalld,” they provide insight into the LASSO estimator in the AFT model with high dimensional

covariates. They also give partial justification for the use of LASSO method in the present problem

under the conditions (A1)-(A5).

5. Simulation studies and data example

5.1 Simulation study I: finite sample comparison

We conduct a simulation study on the following six examples withn = 200 andd = 30 to evaluate

the finite sample performance of the proposed methods. For all six models, the event times are

generated fromT = β0 + X ′β + ε, whereβ0 = 0.5 andε ∼ N(0, 0.5). The censoring variables

are generated as uniformly distributed and independent of the events. The tuning parameters are

chosen using five-fold cross validation. The censoring rates are about30% for examples 1–3 and

70% for examples 4–6.

Example 1: the first ten components ofβ are equal to 1 and the rest components are 0. The

pairwise correlation between theith and thejth components ofX is set to be0.5|i−j|. In this

example, we have a moderate number of large effects.

Example 2: the first 15 components ofβ are equal to 0.4 and the rest components are 0.2.X is

the same as for example 1. In this model, we have a large number of moderate to small effects.

Example 3: The first 15 components ofβ are 1 and the rest are 0. The predictors are generated
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as follows:

Xi = Z1 + εi, Z1 ∼ N(0, 1), i = 1, . . . , 5; Xi = Z2 + εi, Z2 ∼ N(0, 1), i = 6, . . . , 10;

Xi = Z3 + εi, Z3 ∼ N(0, 1), i = 11, . . . , 15; Xi ∼ N(0, 1), Xi i.i.d. i = 16, . . . , 30,

whereεi are i.i.dN(0, 0.01), i = 1, . . . , 15. In this model, we have 3 equally important groups and

within each group there are 5 members. There are also 15 pure noises.

Examples 4 to 6 are the same as examples 1 to 3, respectively, except that the censoring rate is

different. The simulation settings are similar to those in Zou and Hastie (2004). Sincen > d, we

are able to compare the LS estimates with the LASSO and the TGDR. The quantities of interest are

the mean squared errors of the estimates and the number of nonzero coefficients. Summaries based

on 100 replicates are shown in Table 1. The intercept is excluded from the constraint (LASSO) and

the threshold step (TGDR) and hence is not counted in the number of nonzero coefficients.

From Table 1, we see that the LASSO can generate small models with reasonably small mean

squared errors. When there exist grouping effects (examples 3 and 6), the LASSO estimates

are more stable than the LS estimates. The LASSO may underestimate the number of non-zero

coefficients when there exist a large number of small covariates effects (examples 2 and 5). The

TGDR has smaller mean squared errors. Compared with the LASSO, the TGDR can better identify

grouping effects as expected (examples 3 and 6). It is also worth noticing that the TGDR tends to

overestimate the number of nonzero coefficients.

5.2 Simulation study II: variance estimation

We use simulations to evaluate the bootstrap approach for variance estimation. 100 datasets are

generated from example 1. We consider the LASSO estimates withu = 5.0 andu = 10.0, and the

TGDR estimates with(k, τ) = (200, 0.3) and (k, τ) = (200, 0.8). For each dataset/estimation

approach, 50 bootstrap replicates are used for variance estimation. In Table 2, we show the
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standard deviations of the estimates and the means of the bootstrap estimated standard deviations

for components 1–3 (with coefficients equal to 1) and 11–13 (with coefficients equal to 0) ofβ.

We can see from Table 2 that the bootstrap standard deviation estimates match the standard

deviations of the estimates very well. Simulation studies with other data settings and tuning

parameters yield similar results.

5.3 Mantle cell lymphoma data

Rosenwald et al. (2003) reported a study using microarray expression analysis of mantle cell

lymphoma (MCL). One of the goals of this study is to discover gene expression signatures

that correlate with survival in MCL patients. Among 101 untreated patients with no history of

previous lymphoma included in this study, 92 were classified as having MCL, based on established

morphologic and immunophenotypic criteria. Survival times of 64 patients were available and

the remaining 28 patients were censored. The median survival time was 2.8 years (range 0.02

to 14.05 years). Lymphochip DNA microarrays (Alizadeh et al., 1999) were used to quantitate

mRNA expression in the lymphoma samples from the 92 patients. The gene expression data set

that contains expression values of 8810 cDNA elements is available athttp://llmpp.nih.gov/MCL.

We apply the AFT model (1) with the LASSO and the TGDR methods to this dataset. These

methods have no computational or methodological limitation on the number of genes that can be

used in the prediction of patients’ failure times. However, because many genes do not change across

the patients or have very low corrleation with survival, we pre-process the genes as follows.

1. Fill in missing expression values with sample means;

2. Compute correlation coefficients of the uncensored survival times with gene expressions;

3. For each gene, compute the maximum and minimum of expression values across all the

sample. Compute the differences between the maximum and minimum values;

4. Select the genes whose correlation with survival time is greater than 0.3 and the difference
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between the maximum and minimum is greater than 2.5.

Such a first stage filtering step is helpful to obtain more stable estimators since the sample

size is relatively much smaller than the total number of genes. 364 genes pass the above selection

criterion. We make the logarithm transformation to the observed times (measured in month) and

standardize the 364 selected genes to have mean 0 and variance 1. Since the number of the

covariates (364) is larger than the sample size (92), reguarization is needed in any estimation

procedure. Table 3 shows the genes with nonzero coefficients from the Stute estimator with LASSO

and TGDR, their unique identification numbers (UNIQID) in the Lymphochip, and GenBank

accession numbers. Some information about these genes are available at the GenBank database

(www.ncbi.nlm.nih.gov). Many of these genes are involved in cell proliferation and tumor growth.

For example, the gene with UNIQID 15981 (GenBank accession # X65550, gene name MKI67)

encodes the proliferation-related antigen Ki-67. This gene is associated with cell proliferation and

is widely used in routine pathology as a ”proliferation marker” to measure the growth fraction

of cells in human tumors. The gene with UNIQID 24612 (GenBank accession # AF343659, gene

name IRTA1) is an immunoreceptor and is implicated in B cell development and lymphomagenesis.

The gene with UNIQID 28027 (GenBank accession # NM001880, gene name ATF2) is the

activating transcription factor 2. Strong nuclear ATF2 expression was also associated melanoma

and with poor survival in melanoma patients. The gene with UNIQID 24376 (GenBank accession

# NM 175739, gene name GCET1) is a serine proteinase inhibitor and is highly restricted to and

expressed in normal germinal center B cells. The gene with UNIQID 24488 (GenBank accession

# NM 001402, gene name EEF1A1) is a translation elongation factor and interacts with the

translationally controlled tumor protein. We note that although this set of genes exhibits strong

statistical correlation with patients’ survival times, the analysis here does not provide information

on whether they are just genomic markers correlated with the survival times or are actually in the

pathways leading to MCL. Indeed, detailed discussion of the biological functions of these genes is
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beyond the scope of this paper.

For model evaluation, we define two hypothetical risk groups based on dichotomizing the

estimated linear risk scores at the median risk score, which gives equal number of subjects in the

two risk groups. Survival curves for the risk groups defined by the LASS0 and the TGDR estimates

are shown in the top two panels in Figure 1, which suggests significant differences between the two

risk groups. The p-values based on the log-rank test are both less then 0.001. Another advantage

of the AFT model is that the event times can be actually estimated, which is not shared by the

Cox model or the additive risk model. In the bottom two panels of Figure 1, we show the plots

of the estimated event times versus the observed times. We notice that at the lower range of the

survival times, the fitted times tend to overestimate the observed survival times. However, overall,

for uncensored subjects, the fitted times provide reasonable estimates of the observed times.

The prediction properties of the proposed approaches are also investigated. We randomly divide

the data into a training set of size 57 and a testing set of size 35. The censoring rates in the two

sets are about the same. Estimation is carried out with the training set only. The linear risk scores

for the testing set are computed using the estimates from the training set. We generate a risk group

indicator based on the linear risk scores, so that there are 17 subjects in the low risk group and 18

in the high risk group. The p-values based on the log-rank test for the differences between two risk

groups are 0.002 (LASSO) and 0.014 (TGDR), respectively. For reference, we carry out similar

testing to the training set. The p-values for the training set are<0.001 (LASSO) and 0.036 (TGDR),

respectively. Therefore, both the LASSO and TGDR methods can provide good prediction of low

or high risk probabilities based on the expression values of the genes selected in the models.

6. Discussion

Analysis of censored failure time data with high dimensional covariates poses an important practical

problem, especially now microarrays that can assay thousands of genes are becoming a routine tool
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in the studies of many diseases. How to estimate the relationship between gene expression data

with patients’ survival and identify important genes presents a class of interesting and challenging

questions. In this article, we studied two regularized versions of the Stute’s estimator for the AFT

model with high-dimensional covariates, the LASSO and the TGDR, for simultaneous variable

selection and estimation.

The simulation studies and the real data example illustrate that the proposed method can

effectively reduce the dimension of the covariates, while providing satisfactory estimation and

prediction results. The LASSO method achieves regularization by penalizing theL1 norm of the

regression coefficients. Although no explicit penalty is placed on the regression parameters, the

TGDR method regularizes the estimator via cross-validation selection of the number of gradient

search steps and the threshold valueτ . For a given number of gradient search steps, smaller values

of τ yield dense estimates similar to those of ridge regression, while bigger values ofτ produce

more sparse estimates. A useful feature of the TGDR is that it is capable of selecting a set of

covariates that have similar values or are highly correlated. Theoretical properties of the TGDR

will be pursued in the future.

In many studies, the covariates include both clinical as well as gene expression data, and

investigators may know some covariates are important based on previous studies. So we may

not want to subject such covariates to variable selection. LetZ denote the vector of covariates of

known importance andα its associated coefficients, then the objective function is

Mw(α, β) =
1

2

n∑
i=1

wni(Y(i) − Z ′
(i)α−X ′

(i)β)2. (5)

We can put theL1 penalty only onβ to obtain a partial LASSO solution. We can also only threshold

the derivatives with respect toβ. Furthermore, there may be models in which different penalties are

appropriate for different parameters. The algorithms described in Section 3 can be easily adapted
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to such situations.

We have derived the asymptotic distribution of the Stute estimator under theL1 penalty when

the number of covariates is fixed. For the TDGR method, if the gradient search is allowed to

continue indefinitely, the TDGR estimator converges to the Stute estimator. Therefore, for the

asymptotic distribution of the TGDR estimator is approximately the same for a fixed number of

covariates and large search steps. However, several questions remain unanswered for the LASSO

and TGDR methods in the AFT model based on the Stute estimator. In particular, it is a difficult and

interesting problem to rigorously work out the approximate sampling distributions of the LASSO

and TGDR Stute estimators for cross validated tuning parameters. Our simulation study suggests

that the 0.632 bootstrap method for variance estimation works reasonably well. It is desirable to

theoretically justify the bootstrap method for the estimators proposed here.
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APPENDIX: PROOFS OFTHEOREMS1 AND 2

Proof of Theorem 1. Let Zi = (1, X ′
i)
′,b = (b0, b1, . . . , bd)

′. Recall

Mn(θ) =
1

2

n∑
i=1

wni(Y(i) − β0 −X ′
(i)β)2 +

λn

n

d∑
j=1

|βj|.
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Whenλn/n → 0, by (A1) to (A4) and the result of Stute (1993), for every fixedθ, Mn(θ) →a.s.

M(θ) where

M(θ) =
1

2

{∫

{T<τY }
(T − β0 −X ′β)2dP + 1{τY ∈ A}

∫

{T=τY }
(T − β0 −X ′β)2dP

}

=
1

2
E(T − β0 −X ′β)2

=
1

2
E[T − β∗0 −X ′β∗ + β∗0 − β0 + X ′(β∗ − β)]2

=
1

2

{
Var(ε) + E[β∗0 − β0 + X ′(β∗ − β)]2

}
,

where the last equality follows from (A1). By (A3),M(θ) is uniquely minimized atθ∗. Thus the

consistency follows by the fact thatMn is a convex function ofθ.

Proof of Theorem 2.By the definition ofMn, we have

Mn(θ+n−1/2b) =
1

2

n∑
i=1

wni[Y(i)−(β∗0 +n−1/2b0)−X ′
(i)(β

∗+n−1/2b−0)]
2+

λn

n

d∑
j=1

|β∗j +n−1/2bj|,

whereb−0 = (b1, . . . , bd)
′. Let Qn(b) = n[Mn(θ∗ + n−1/2b)−Mn(θ∗)]. Then

Qn(b) = −√n

n∑
i=1

wni(Y(i)−Z ′
(i)θ

∗)Z ′
(i)b+

1

2

n∑
i=1

wnib
′Z(i)Z

′
(i)b+λn

d∑
j=1

[|β∗j + n−1/2bj| − |β∗j |
]
.

By the results of Stute (1993, 1996), we have

n∑
i=1

wniZ(i)Z
′
(i) →P E(ZZ ′),

and when (A5a) and (A5b) hold,

√
n

n∑
i=1

wni(Y(i) − Z ′
(i)θ

∗)Z(i) →D W,

23



whereW ∼ N(0, Σ), with Σ defined in the theorem. The last term inQn(b)

λn

d∑
j=1

[|β∗j + n−1/2bj| − |β∗j |
] → λ0

d∑
j=1

[
bjsgn(β∗j )1{β∗j 6= 0}+ |bj|1{β∗j = 0}]

asn → ∞. ThusQn(b) →D Q(b). Now the result follows from the argmax continuous mapping

theorem, see e.g., Van der Vaart and Wellner (1996), page 286.
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Table 1. Simulation study: comparisons of different estimation approaches. mse: mean squared
error. count: number of nonzero coefficients.

Example (count) LS LASSO TGDR
mse count mse count mse count

1 (10) 0.351 29.9 0.654 10.0 0.153 16.2
2 (30) 0.352 30.0 3.004 7.4 0.144 29.9
3 (15) 318.9 30.0 31.90 4.7 0.079 19.5
4 (10) 1.363 29.9 2.875 8.3 0.578 21.5
5 (30) 1.450 30.0 3.174 5.9 0.531 29.6
6 (15) 1461.5 30.0 26.86 4.2 0.986 24.4
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Table 2. Simulation study: bootstrap variance estimation. sd. est: standard deviations of estimates
based on 100 replicates. mean. sd: mean of the estimated standard deviations.

β1 β2 β3 β11 β12 β13

LASSO sd. est 0.205 0.312 0.369 0.000 0.000 0.000
u = 5.0 mean sd. 0.213 0.333 0.358 0.003 0.003 0.000
LASSO sd. est 0.163 0.229 0.212 0.000 0.000 0.000
u = 10.0 mean sd. 0.249 0.288 0.204 0.014 0.002 0.000
TGDR sd. est 0.109 0.107 0.107 0.124 0.066 0.042
τ = 0.3 mean sd. 0.101 0.095 0.093 0.112 0.070 0.058
TGDR sd. est 0.189 0.232 0.199 0.008 0.000 0.000
τ = 0.8 mean sd. 0.174 0.187 0.185 0.023 0.006 0.003
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Table 3. Mantle cell lymphoma data: Genes with non-zero coefficients. Est.: estimates of
coefficients. S.E.: bootstrap standard errors.

LASSO TGDR
UNIQID Genbank Accession # Est. S.E. Est. S.E.
15981 X65550 -0.088 0.099 -0.091 0.081
16312 U19769 – – -0.093 0.061
16541 M14535 0.066 0.077 0.157 0.105
16561 AF008552 -0.032 0.017 -0.269 0.125
17149 X97795 – – 0.127 0.084
17326 X67155 -0.046 0.023 – –
17434 D14134 -0.039 0.086 – –
20232 U75689 – – -0.038 0.108
23972 AI370174 – – 0.002 0.045
24376 NM175739 0.151 0.090 0.197 0.140
24379 AF343659 0.056 0.065 – –
24488 NM001402 0.082 0.105 0.164 0.117
24610 X62534 – – -0.021 0.027
24612 AF343659 – – 0.052 0.114
24845 M26062 0.110 0.128 0.156 0.121
24897 X07203 0.057 0.078 – –
26192 X02747 0.059 0.070 0.038 0.056
26475 M23452 -0.031 0.027 – –
26944 M34065 -0.030 0.065 -0.112 0.106
27095 J04088 -0.077 0.066 – –
27108 S75311 0.159 0.094 0.100 0.116
27678 X89986 0.024 0.035 0.016 0.031
27838 D83597 – – -0.070 0.064
28027 NM001880 – – 0.051 0.098
28638 U29680 – – 0.034 0.056
29163 U43148 – – 0.028 0.107
29875 NM194319 – – 0.009 0.011
30110 L04288 0.021 0.062 0.017 0.064
30898 NM013242 -0.067 0.057 – –
31049 AF052573 -0.093 0.076 – –
31081 NM018136 – – -0.082 0.089
31101 AA804900 -0.108 0.102 -0.006 0.077
31837 AI361774 – – -0.006 0.106
32249 M65134 -0.029 0.057 -0.030 0.084
32979 AA761214 0.019 0.058 0.009 0.054
33892 AB037883 – – 0.033 0.032
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Figure 1: Mantle cell lymphoma data. Upper panels: survival curves for two risk groups. Lower
panels: estimated event times versus observed times. Reversed triangles represent uncensored
observations, while +’s represent censored observations.
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